翻訳と辞書
Words near each other
・ Hurvat Amudim
・ Hurvat Itri
・ Hurvin Anderson
・ Hurvin McCormack
・ Hurvitz
・ Hurwal Formation
・ Hurwenen
・ Hurwicz
・ Hurwitz
・ Hurwitz class number
・ Hurwitz determinant
・ Hurwitz matrix
・ Hurwitz polynomial
・ Hurwitz problem
・ Hurwitz quaternion
Hurwitz quaternion order
・ Hurwitz surface
・ Hurwitz zeta function
・ Hurwitz's automorphisms theorem
・ Hurwitz's theorem
・ Hurwitz's theorem (complex analysis)
・ Hurwitz's theorem (composition algebras)
・ Hurwitz's theorem (number theory)
・ Hurwood Company
・ Hurworth Grange Community Centre
・ Hurworth House School
・ Hurworth Place
・ Hurworth School
・ Hurworth, New Zealand
・ Hurworth-on-Tees


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hurwitz quaternion order : ウィキペディア英語版
Hurwitz quaternion order
The Hurwitz quaternion order is a specific order in a quaternion algebra over a suitable number field. The order is of particular importance in Riemann surface theory, in connection with surfaces with maximal symmetry, namely the Hurwitz surfaces.〔.〕 The Hurwitz quaternion order was studied in 1967 by Goro Shimura,〔.〕 but first explicitly described by Noam Elkies in 1998.〔.〕 For an alternative use of the term, see Hurwitz quaternion (both usages are current in the literature).
==Definition==
Let K be the maximal real subfield of \mathbb(\rho) where \rho is a 7th-primitive root of unity.
The ring of integers of K is \mathbb(), where the element \eta=\rho+ \bar\rho can be identified with the positive real 2\cos(\tfrac). Let D be the quaternion algebra, or symbol algebra
:D:=\,(\eta,\eta)_,
so that i^2=j^2=\eta and ij=-ji in D. Also let \tau=1+\eta+\eta^2 and j'=\tfrac(1+\eta i + \tau j). Let
:\mathcal_()().
Then \mathcal_{\mathrm{Hur}} is a maximal order of D, described explicitly by Noam Elkies.〔.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hurwitz quaternion order」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.